Well-balanced schemes for conservation laws with source terms based on a local discontinuous flux formulation

نویسندگان

  • Kenneth H. Karlsen
  • Siddhartha Mishra
  • Nils Henrik Risebro
چکیده

We propose and analyze a finite volume scheme of the Godunov type for conservation laws with source terms that preserve discrete steady states. The scheme works in the resonant regime as well as for problems with discontinuous flux. Moreover, an additional modification of the scheme is not required to resolve transients, and solutions of nonlinear algebraic equations are not involved. Our well-balanced scheme is based on modifying the flux function locally to account for the source term and to use a numerical scheme especially designed for conservation laws with discontinuous flux. Due to the difficulty of obtaining BV estimates, we use the compensated compactness method to prove that the scheme converges to the unique entropy solution as the discretization parameter tends to zero. We include numerical experiments in order to show the features of the scheme and how it compares with a wellbalanced scheme from the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Source Terms and Boundary Conditions Using Arbitrary High Order Discontinuous Galerkin Schemes

This article is devoted to the discretization of source terms and boundary conditions using discontinuous Galerkin schemes with an arbitrary high order of accuracy in space and time for the solution of hyperbolic conservation laws on unstructured triangular meshes. The building block of the method is a particular numerical flux function at the element interfaces based on the solution of General...

متن کامل

A New Approach of High OrderWell-Balanced Finite Volume WENO Schemes and Discontinuous Galerkin Methods for a Class of Hyperbolic Systems with Source Terms†

Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source terms. In our earlier work [31–33], we designed high order well-balanced schemes to a class of hyperbolic systems with separable source terms. In this paper, we present a different approach to the same purpose: designing high order well-balanced finite volume weight...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

Conservation laws with discontinuous flux

We consider an hyperbolic conservation law with discontinuous flux. Such partial differential equation arises in different applicative problems, in particular we are motivated by a model of traffic flow. We provide a new formulation in terms of Riemann Solvers. Moreover, we determine the class of Riemann Solvers which provide existence and uniqueness of the corresponding weak entropic solutions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 78  شماره 

صفحات  -

تاریخ انتشار 2009